The flow around a stepped cylinder with turbulent wake and stable shear layer

Author:

Massaro D.ORCID,Peplinski A.ORCID,Schlatter P.ORCID

Abstract

The turbulent external flow around a three-dimensional stepped cylinder is studied by means of direct numerical simulations with the adaptive mesh refinement technique. We give a broad perspective of the flow regimes from laminar to turbulent wake at $Re_D=5000$ , which is the highest ever considered for this flow case. In particular, we focus on the intermediate Reynolds number $Re_D=1000$ that reveals a turbulent wake coupled with a stable cylinder shear layer (subcritical regime). This flow shows a junction dynamics similar to the laminar $Re_D=150$ , where no hairpin vortex appears around the edges, and just two horseshoe vortices are visible. A new stable vortex in the form of a ring, which coils around the rear area, is also identified. In the turbulent wake, the presence of three wake cells is pointed out: the large and small cylinder cells together with the modulation region. However, the modulation dynamics varies between the subcritical and turbulent regimes. A time-averaged, three-dimensional set of statistics is computed, and spatially coherent structures are extracted via proper orthogonal decomposition (POD). The POD identifies the (long-debated) connection between the N-cell and the downwash behind the junction. Furthermore, as the Reynolds number increases, the downwash phenomenon becomes less prominent. Eventually, a reduced-order reconstruction with the most energetically relevant modes is defined to explain the wake vortex interactions. This also serves as a valuable starting point for simulating the stepped cylinder wake behaviour within complex frameworks, e.g. fluid–structure interaction.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3