Electroencephalogram Experimentation to Understand Creativity of Mechanical Engineering Students

Author:

Ahad Md Tanvir1,Hartog Tess1,Alhashim Amin G.1,Marshall Megan1,Siddique Zahed1

Affiliation:

1. University of Oklahoma School of Aerospace and Mechanical Engineering, , 865 Asp Avenue, Felgar Hall, Room 212, Norman, OK 73019

Abstract

Abstract Electroencephalogram (EEG) alpha power (8–13 Hz) is a characteristic of various creative task conditions and is involved in creative ideation. Alpha power varies as a function of creativity-related task demands. This study investigated the event-related potentials (ERPs), alpha power activation, and potential machine learning (ML) to classify the neural responses of engineering students involved with creativity task. All participants performed a modified alternate uses task (AUT), in which participants categorized functions (or uses) for everyday objects as either creative, nonsense, or common. At first, this study investigated the fundamental ERPs over central and parietooccipital temporal areas. The bio-responses to understand creativity in engineering students demonstrates that nonsensical and creative stimuli elicit larger N400 amplitudes (−1.107 mV and −0.755 mV, respectively) than common uses (0.0859 mV) on the 300–500 ms window. N400 effect was observed on 300–500 ms window from the grand average waveforms of each electrode of interest. ANOVA analysis identified a significant main effect: decreased alpha power during creative ideation, especially over (O1/2, P7/8) parietooccipital temporal area. Machine learning is used to classify the specific temporal area data’s neural responses (creative, nonsense, and common). A k-nearest neighbors (kNN) classifier was used, and results were evaluated in terms of accuracy, precision, recall, and F1- score using the collected datasets from the participants. With an overall 99.92% accuracy and area under the curve at 0.9995, the kNN classifier successfully classified the participants’ neural responses. These results have great potential for broader adaptation of machine learning techniques in creativity research.

Funder

National Science Foundation

Publisher

ASME International

Reference68 articles.

1. A Standardised Procedure for Evaluating Creative Systems: Computational Creativity Evaluation Based on What It Is to Be Creative;Jordanous;Cogn. Comput.,2012

2. Creativity is Undefinable, Controllable, and Everywhere

3. The Measurement of Creativity: From Definitional Consensus to the Introduction of a New Heuristic Framework;Batey;Creat. Res. J.,2012

4. Applying MacKinnon’s 4Ps to Foster Creative Thinking and Creative Behaviours in Kindergarten Children;Riga;Education 313,2014

5. The Standard Definition of Creativity;Runco;Creat. Res. J.,2012

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3