Auto Ignition Study of Methane and Bio Alcohol Fuel Blends

Author:

Zheng Xuan1,Jouzdani Shirin1,Akih-Kumgeh Benjamin1

Affiliation:

1. Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, NY 13244

Abstract

Abstract Methane (CH4) and bio alcohols have different ignition properties. These have been extensively studied and the resulting experimental data have been used to validate chemical kinetic models. Methane is the main component of natural gas, which is of interest because of its relative availability and lower emissions compared to other hydrocarbon fuels. Given growing interest in fuel-flexible systems, there can be situations in which the combustion properties of natural gas need to be modified by adding biofuels such as bio alcohols. This can occur in dual-fuel internal combustion engines or gas turbines with dual-fuel capabilities. The combustion behavior of such blends can be understood by studying the auto ignition properties in fundamental combustion experiments. Studies of the ignition of such blends are very limited in the literature. In this work, the auto ignition of methane and bio alcohol fuel blends is investigated using a shock tube facility. The chosen bio alcohols are ethanol (C2H5OH) and n-propanol (NC3H7OH). Experiments are carried out at 3 atm and 10 atm for stoichiometric and lean mixtures of fuel, oxygen, and argon. The ignition delay times of the pure fuels are first established at conditions of constant oxygen concentration and comparable pressures. The ignition delay times of blends with 50% methane are then measured. The pyrolysis kinetics of the blends is further explored by measuring CO formation during pyrolysis of the alcohol and methane–alcohol blends. The resulting experimental data are compared with the predictions of selected chemical kinetic models to establish the ability of these models to predict the disproportionate enhancement of methane ignition by the added alcohol.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference45 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3