Dynamic Modeling and Monitoring of Contour Crafting—An Extrusion-Based Layered Manufacturing Process

Author:

Bukkapatnam Satish1,Clark Ben2

Affiliation:

1. School of Industrial Engineering and Management, Oklahoma State University, Stillwater, OK

2. Pratt and Whitney Rockeydyne, Inc, Canoga Park, CA

Abstract

Layered manufacturing (LM) processes have emerged as legitimate processes for manufacturing various precision microelectronic components and bio-implants. These processes are also being considered for fabricating large customized free forms like buildings, statues, reactor beds, and car bodies. Many of these applications demand high levels of quality (e.g., Ra<0.1μm) and functional performance. Among the LM processes, extrusion-based processes can potentially offer high production rates together with lower setup and operating costs. Yet process failures resulting from anomalies, such as nozzle clogging, overflow, dynamic instabilities, bambooing, and machine degradation impede a widespread applicability of these processes. Scientific principles that relate the sources of these anomalies to process dynamics seem necessary for effective quality monitoring. In this paper we present a nonlinear lumped-mass model to capture dynamics underlying contour crafting, which is an extrusion-based LM process. The two degrees-of-freedom model, developed based on experimental characterizations, captures salient features of the process dynamics including the prominent manifestations of process nonlinearity. Experimental investigations show that the model can lead to effective monitoring of process conditions including overflow and underflow of material from extrusion nozzle, as well as suboptimal (fast and slow) feed rates of the extrusion head.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Reference32 articles.

1. Innovative Rapid Prototyping Process for Large Sized, Smooth Surfaced Complex Shapes in Wide Variety of Materials;Khoshnevis;J. Mater. Technol.

2. Advanced Machine and Process Control in Layered Manufacturing;Jafari

3. Superplastic Extrusion of Microgear Shaft of 10 μm in Module;Saotome;Microsyst. Technol.

4. Thermal Analysis of Fused Deposition;Yardimici

5. Signature analysis and defect detection in layered manufacturing of ceramic sensors and actuators;Fang;Machine Vision and Applications

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3