Damage Behavior of Multilayer Axisymmetric Shells Obtained by the FDM Method

Author:

Salenko Oleksandr1ORCID,Drahobetskyi Volodymyr2ORCID,Symonova Anastasiia2ORCID,Onishchenko Evgen1ORCID,Kostenko Anton1ORCID,Tsurkan Daniil1ORCID,Vasiukov Dmytro3ORCID

Affiliation:

1. National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine

2. Kremenchuk Mykhailo Ostrohradskyi National University, Kremenchuk, Ukraine

3. IMT Nord Europe, École Mines Télécom, IMT-Université de Lille, France

Abstract

This research rigorously explores the additive synthesis of structural components, focusing on unraveling the challenges and defect mechanisms intrinsic to the fused deposition modeling (FDM) process. Leveraging a comprehensive literature review and employing theoretical modeling and finite element analysis using ANSYS software, the study meticulously investigates the behavior of multilayer axisymmetric shells under varying internal pressure conditions. Critical parameters are identified, and the impact of design factors, including material properties, geometric parameters, and internal pressure, is quantitatively assessed using a rich digital dataset. In a series of model experiments, the study reveals specific numerical results that underscore the progressive nature of damage development in FDM-produced multilayer axisymmetric shells. Notably, under increasing internal pressure, stresses on the tank’s inner walls reach up to 27.5 MPa, emphasizing the critical importance of considering material properties in the design phase. The research also uncovers that the thickness of tank walls, while significant in resulting stresses, does not markedly impact the damage development mechanism. However, it places a premium on selecting rational parameters for the honeycomb system, including shell thickness, honeycomb height, honeycomb wall thickness, and honeycomb cell size, to minimize stress concentrations and enhance structural integrity. The inclusion of honeycomb structures in the tank design, as evidenced by specific results, provides enhanced thermal insulation properties. The research demonstrates that this design feature helps localize damage and mitigates the formation of significant trunk cracks, particularly along generative cracks.

Publisher

Sumy State University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3