Understanding the Effect of Three-Dimensional Design in Tandem Blade

Author:

Kumar Amit1,Kumar Akshay1,Chhugani Hitesh1,More Shubhali1,Pradeep A. M.1

Affiliation:

1. Indian Institute of Technology Bombay Department of Aerospace Engineering, , Powai, Mumbai, Maharashtra 400076 , India

Abstract

Abstract In order to maximize the pressure ratio and efficiency, compressor designers have tried several unconventional design approaches. Tandem blading is one such unconventional design that promises a higher pressure ratio per stage through a higher diffusion factor. The nozzle shape created between the forward and aft blades of a tandem configuration acts as a passive boundary layer control mechanism. The boundary layer growth over the aft rotor is therefore effectively controlled with the help of this gap-nozzle flow. The flow complexity is likely to increase in the case of a tandem rotor due to the twin leakage vortices, twin wake regions, and their interaction with the hub and casing boundary layers. Modern compressor blades are often designed with three-dimensional blade techniques such as sweep, lean, dihedral, end bent, etc., to reduce the various losses and achieve optimum performance. However, to the best of the author’s knowledge, the effect of 3D blade designs on the performance of tandem rotors has not been fully explored so far. A comprehensive numerical investigation is undertaken to understand the effect of 3D designs on the performance of tandem blades. Axial sweep and dihedral failed to improve the performance of the tandem rotor. Significant improvement in the stall margin is observed for the forward chordwise-swept and negative lean tandem rotors and is largely attributed to lower tip incidence. The performance penalty of the forward-swept and negatively leaned cases can be reduced by integrating compound or variable lean and sweep into the design.

Publisher

ASME International

Subject

Mechanical Engineering

Reference28 articles.

1. Investigations of an Axial Flow Compressor With Tandem Cascades;Bammert;J. Eng. Power,1980

2. Development of a Highly Loaded Fan With Tandem Cascade;Hasegawa,2003

3. Design and Test of Transonic Compressor Rotor With Tandem Cascade;Sakai,2003

4. Design Methodology of a Highly Loaded Tandem Rotor and Its Performance Analysis Under Clean and Distorted Inflows;Kumar;Proc. IMechE: Part C: J. Mech. Eng. Sci.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3