Affiliation:
1. Department of Aerospace Engineering, Indian Institute of Technology Bombay, Powai, India
Abstract
Compact and efficient compressor design is one of the key challenges in aero-engine development. The flow through a compressor is exposed to adverse pressure gradients, which limits the maximum allowable flow turning in a compressor blade. Tandem blading is an interesting concept to achieve a higher total pressure rise by augmenting the flow turning angle. Variation in axial overlap and percentage pitch of the forward and aft blade elements largely influences the behavior of the tandem configuration. In the present study, the genetic algorithm is used to optimize the axial overlap and the percentage pitch for the tandem rotor. Results indicate that a lower axial overlap and higher percentage pitch results in optimum performance. The paper presents the parametric study of four tandem configurations with different axial overlaps and percentage pitches. A detailed experimental analysis of the four different tandem configurations is included in this paper. The behavior of the tandem rotor is examined under the clean and radially distorted inflow. Further, a comparison is drawn with a conventional single rotor in terms of aerodynamic parameters such as total pressure rise, axial velocity, and stall margin. The experimental analysis is supplemented by some interesting computational results, which are included to provide some insight into the complex flow field of the tandem rotor. Tandem rotor design is observed to have a higher sensitivity to radial tip inflow distortion. The upstream shift of the aft rotor blade adversely affects the total pressure rise and stall margin of the tandem rotor.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献