Affiliation:
1. Boiling and Two-Phase Flow Laboratory, School of Mechanical Engineering, Purdue University, West Lafayette, Ind. 47907
Abstract
Several surface augmentation techniques were examined in an investigation of enhancement of critical heat flux (CHF) from a simulated electronic chip to a fluorocarbon (FC-72) liquid in a vertical channel. A parametric comparison of boiling performances is presented for a smooth surface and for surfaces with low-profile microgrooves, low-profile microstuds, and high-profile pin fins. Critical heat fluxes as high as 361 W/cm2 were achieved using a combination of moderate flow velocity, high subcooling and surface enhancement. A semiempirical model constructed previously for CHF from a smooth discrete heat source to saturated or subcooled liquid flow, was found successful in correlating CHF data for the three enhanced surfaces.
Subject
Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献