Thermo-Economic Assessment and Multi-Objective Optimization of an Innovatively Designed District Cooling System in Saudi Arabia

Author:

Alsagri Ali Sulaiman1

Affiliation:

1. Department of Mechanical Engineering, College of Engineering, Qassim University, Unaizah 52471, Saudi Arabia

Abstract

Abstract The experience of leading countries in distributed energy systems (e.g., Scandinavian countries) shows that district cooling systems are highly beneficial techno-economic-environmentally by facilitating the use of waste heat resources, solar energy, etc. for cold supply at large scales. This study proposes the optimal development of a novel district cooling design equipped with a large-scale cold storage unit and utilizing the exhaust waste heat of an energy plant in a case study in Saudi Arabia. The optimal configuration of the hybrid system, the sizing of its components, and operating conditions are found using multi-objective optimization techniques based on the genetic algorithm method and a creative performance assessment index. Then, the feasibility of this optimized proposal is investigated through comprehensive thermodynamic and economic analyses. The results show that a district cooling system can surely cope with the harsh climate condition of the case study and provide the required interior comfort conditions. The energy and exergy efficiencies of the system can be as high as 62% and 53% using an absorption chiller utilizing a power plant’s waste heat along with a storage tank for peak shaving. The levelized cost of cooling of the system can be 28 USD/MW h, by which the payback period will be only 8 years.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3