The Optimal Control Approach to Dynamical Inverse Problems

Author:

Steiner Wolfgang1,Reichl Stefan1

Affiliation:

1. Department of Mechanical Engineering, University of Applied Sciences Upper Austria, Stelzhamerstr. 23, A-4600 Wels, Austria

Abstract

This paper considers solution strategies for “dynamical inverse problems,” where the main goal is to determine the excitation of a dynamical system, such that some output variables, which are derived from the system’s state variables, coincide with desired time functions. The paper demonstrates how such problems can be restated as optimal control problems and presents a numerical solution approach based on the method of steepest descent. First, a performance measure is introduced, which characterizes the deviation of the output variables from the desired values, and which is minimized by the solution of the inverse problem. Second, we show, how the gradient of this error functional can be computed efficiently by applying the theory of optimal control, in particular by following an idea of Kelley and Bryson. As the major contribution of this paper we present a modification of this method which allows the application to the case where the state equations are given by a set of differential algebraic equations. This situation has great practical importance since multibody systems are mostly described in this way. For comparison, we also discuss an approach which bases an a direct transcription of the optimal control problem. Moreover, other methods to solve dynamical inverse problems are summarized.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Reference37 articles.

1. Practical Approaches for Inverse Calculations of Drive Signals in a Virtual Test Rig with Regard to Agricultural Machines;Reichl

2. Calculating Invariant Loads for System Simulation in Vehicle Engineering;Burger

3. Optimal Control Methods for the Calculation of Invariant Excitation Signals for Multibody Systems;Burger

4. A Geometric Approach to Solving Problems of Control Constraints: Theory and a DAE framework;Blajer;Multibody Syst. Dyn.

5. Numerical Integration of Mechanical Systems With Mixed Holonomic and Control Constraints;Betsch

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3