Effect of Chemical Vapor Infiltration Induced Matrix Porosity on the Mechanical Behavior of Ceramic Matrix Minicomposites

Author:

Nagaraja Abhilash1,Gururaja Suhasini1

Affiliation:

1. Department of Aerospace Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India

Abstract

Abstract Ceramic matrix composites (CMCs) exhibit process-induced defects such as matrix porosity at multiple length scales that have a considerable influence on their mechanical and failure behavior. This work focuses on the microscale mechanical behavior of single tow CMCs in the presence of microporosities that exist within fiber bundles of the composite. Microporosities in a single tow C/boron nitride (BN)/SiC CMC minicomposite fabricated by chemical vapor infiltration (CVI) have been characterized by X-ray microcomputed tomography. The porosity distribution in the scanned region has been represented by probability distribution functions (PDFs) that serve as an input to numerical homogenization. Effective elastic properties in the presence of matrix micropores have been obtained by a two-step numerical homogenization approach considering the statistical distributions of pore parameters obtained from experimental characterization. A variation of the approach has been utilized to investigate the severity of pores with respect to their location and orientation relative to the fiber reinforcement.

Publisher

ASME International

Subject

Mechanical Engineering,Safety Research,Safety, Risk, Reliability and Quality

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3