Experimental and Numerical Analysis of the Cavitating Part Load Vortex Dynamics of Low-Head Hydraulic Turbines

Author:

Houde Se´bastien1,Iliescu Monica S.1,Fraser Richard1,Lemay Se´bastien1,Ciocan Gabriel D.1,Descheˆnes Claire1

Affiliation:

1. Laval University, Quebec City, QC, Canada

Abstract

The draft tube flow is a two-sided challenge for the operation of a hydraulic turbine. On one side, it is an important component for the performance of low to medium head turbines, where it can provide up to 40% of the extracted energy from the flow. On the other side, being a diffuser with a complex vorticity distribution at the inlet, vortex breakdown instability can occur at part load and generate a corkscrewed precessing vortex that can be associated with cavitation. The cavitating vortex rope, may generate undesired power output fluctuation and/or structural vibration. Therefore, draft tubes are much studied components but hard to tackle both numerically and experimentally. Within the framework of the AxialT project, the flow in the draft tube of a propeller turbine model operating at part load was studied using a combination of two-phase Particle Image Velocimetry (PIV) measurements and Unsteady Reynolds Averaged Navier-Stokes (URANS) simulations. The paper main focus is on the experimental methodology and results. It explains how Particle Image Velocimetry measurements were implemented, validated and post-treated to provide flow measurements in the draft tube cone at part load in the cavitating and non-cavitating regimes. It also describes various image processing techniques used to extract the velocity field around the cavitating vortex rope and to estimate the location of the water-vapour interface of the cavitating region. In the spirit of feeding experimental data to numerical simulations, an analysis of measured velocity profiles just under the runner is presented. Comparison between PIV measurements and preliminary URANS simulations is also illustrated.

Publisher

ASMEDC

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3