Study on P-Q Curves of Cooling Fans for Thermal Design of Electronic Equipment (Effects of Opening Position of Obstructions Near a Fan)

Author:

Fukue Takashi1,Ishizuka Masaru1,Hatakeyama Tomoyuki1,Nakagawa Shinji1,Koizumi Katsuhiro2

Affiliation:

1. Toyama Prefectural University, Imizu, Japan

2. COSEL Co., Ltd., Toyama, Japan

Abstract

This study describes an operation pressure and supplies flow rate of an axial cooling fan installed in high-density packaging electronic equipment. Fan performance is generally defined by their P-Q curve, specifically, a relationship between fan pressure rise (ΔP) and flow rate (Q). A compact cooling fan often operates in a high-density mounting device, which may decrease the fan performance. In this study, we focus on an obstruction near a fan, which is electronic components such as PCBs, capacitors and heat sinks, as one of a factor which decreases fan performance. We installed a perforated plate which simulated the above components near a fan and measured the P-Q curve. To investigate a relationship between a fan performance decrease and an opening position near the fan, a part of the perforated plate was closed. Closed position was changed and explored an opening condition which caused the dominant fan performance decrease. From experiments, it was found that the fan performance was decreased when flow passage in front of a fan was blocked by an obstruction. Especially, when flow passage in front of a fan hub was blocked, a dominantly reduction of fan pressure was caused. An obstruction rear a fan has no effect on a fan performance curve itself. In addition, opening conditions in front of a fan tip had a little influence on a fan pressure characteristic when there was no obstruction in front of a hub.

Publisher

ASMEDC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3