Comparative Analysis of Different Data Center Airflow Management Configurations

Author:

Shrivastava Saurabh1,Sammakia Bahgat1,Schmidt Roger2,Iyengar Madhusudan2

Affiliation:

1. State University of New York at Binghamton, Binghamton, NY

2. IBM Systems and Technology Group, Poughkeepsie, NY

Abstract

Increase in computing power resulting from high performance microprocessors, packages, and modules and the deployment of high heat load computer rack units in high density configurations, has escalated the thermal challenges in today’s data center systems. One of the key issues is the location of hot recirculation regions in the room and the mixing of hot rack exhaust air with the cold supply air. Along with many factors such as the rack heat load and the cooling capacity of the supply air, the data center thermal management architecture plays an important role in determining the reliability of the electronic equipment and the general thermal performance of the data center. There are several candidate configurations available for the air ducting designs for data centers. The overall energy efficiency of the system is highly dependant upon the selection of the specific configuration. This paper will summarize the results of a broad numerical study carried out to assess the effectiveness of different data center configurations. The numerical modeling is performed using a commercial computational fluid dynamics (CFD) code based on finite volume approach. The configurations studied include different combinations of raised floor and ceiling supply and return vent location subject to specific constraints. The performance of the data center has been characterized on the basis of average and maximum mean region rack inlet air temperature. Among the seven different configurations compared, the raised floor/ceiling return type configuration is found to be the most effective configuration for the given set of constraints and assumptions.

Publisher

ASMEDC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3