Development of a Postprocessing Methodology for Studying Thermal Stratification in an HCCI Engine

Author:

Lawler Benjamin,Hoffman Mark,Filipi Zoran1,Güralp Orgun,Najt Paul2

Affiliation:

1. W. E. Lay Automotive Laboratory, Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109

2. General Motors Research and Development, Warren, MI, 48092

Abstract

Naturally occurring thermal stratification significantly impacts the characteristics of homogeneous charge compression ignition (HCCI) combustion. The in-cylinder gas temperature distributions prior to combustion dictate the ignition phasing, burn rates, combustion efficiency, and unburned hydrocarbon and CO emissions associated with HCCI operation. Characterizing the gas temperature fields in an HCCI engine and correlating them to HCCI burn rates is a prerequisite for developing strategies to expand the HCCI operating range. To study the development of thermal stratification in more detail, a new analysis methodology for postprocessing experimental HCCI engine data is proposed. This analysis tool uses the autoignition integral in the context of the mass fraction burned curve to infer information about the distribution of temperature that exists in the cylinder prior to combustion. An assumption is made about the shape of the charge temperature profiles of the unburned gas during compression and after combustion starts elsewhere in the cylinder. Second, it is assumed that chemical reaction rates proceed very rapidly in comparison to the staggering of ignition phasing from thermal stratification. The autoignition integral is then coupled to the mass fraction burned curve to produce temperature-mass distributions that are representative of a particular combustion event. Due to the computational efficiency associated with this zero-dimensional calculation, a large number of zones can be simulated at very little computational expense. The temperature-mass distributions are then studied over a coolant temperature sweep. The results show that very small changes to compression heat transfer can shift the distribution of mass and temperature in the cylinder enough to significantly affect HCCI burn rates and emissions.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3