Real-Time Processing of Engine Acoustic Emission for Diesel Injectors Diagnostic and Recentering

Author:

Ponti Fabrizio1,Ravaglioli Vittorio1,De Cesare Matteo2

Affiliation:

1. Department of Industrial Engineering (DIN), University of Bologna, Via Fontanelle 40, Forli 47121, Italy e-mail:

2. Magneti Marelli Powertrain S.p.a., Via del Timavo 33, Bologna 40131, Italy e-mail:

Abstract

Diesel engine control strategies use complex injection patterns which are designed to meet the increasing request for engine-out emissions and fuel consumption reduction. As a result of the large number of tuneable injection parameters in modern injection systems (such as start and duration of each injection), injection patterns can be designed with many degrees-of-freedom. Each variation of the injection parameters modifies the whole combustion process and, consequently, engine-out emissions. Aging of the injection system usually affects injection location within the cycle as well as the amount of injected fuel (compared to the target value), especially for small pre-injections. Since diesel combustion is very sensitive to injection pattern variations, aging of injectors strongly affects engine behavior, in terms of both efficiency and pollutant emissions production. Moreover, such variations greatly affect other quantities related to the effectiveness of the combustion process, such as noise radiated by the engine. This work analyses the effects of pre-injection variations on combustion, pollutant emissions, and noise radiated by the engine. In particular, several experimental tests were run on a 1.3 L common rail diesel engine varying the amount of fuel injected in pre-injections. Torque delivered by the engine and center of combustion (MFB50) were kept constant using a specifically designed closed-loop combustion controller. During the tests, noise radiated by the engine was measured by properly processing the signal coming from a microphone faced to the engine block. The investigation of the correlation between the combustion process and engine noise can be used to setup a closed-loop algorithm for detecting and recentering injectors' drifts over time.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3