Diesel Injector Coking: Optical-Chemical Analysis of Deposits and Influence on Injected Flow-Rate, Fuel Spray and Engine Performance

Author:

d’Ambrosio S.1,Ferrari A.1

Affiliation:

1. Dipartimento di Energetica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy

Abstract

The physical origin of injector coking in diesel engines has been clarified and the most critical design parameters and operating variables pertaining to the occurrence of the phenomenon have been identified. Fouling has been shown to be affected by many factors, such as injector temperature, nozzle configuration, hole diameter and conicity as well as fuel composition. Optical and scanning electron microscope (SEM) analyses have been conducted both inside and outside injectors of different type and four locations have been identified as the main deposition sites. Furthermore, different coking typologies, i.e., dry and wet coking, have been assessed and discussed. Energy Dispersive X-ray (EDX) spectroscopy images of the deposits on the spray hole walls have revealed that minute quantities of Zn catalyze the coking reactions to a great extent. Significant quantities of Zn have also been found in the injector deposits. An extensive experimental test campaign has been carried out at the engine test bench with different nozzle setups in order to evaluate performance deterioration after different ageing procedures. The effects of both the Zn concentration in the fuel and running time have been assessed separately on the fouling rate. Injection rate time histories have been acquired at the hydraulic test rig, under different working conditions, for both new and aged injectors. The experimental changes in the EVI profiles subsequent to fouling have been analyzed and related to the corresponding variations in engine power measured at the engine test bench. A previously developed combustion multi-zone diagnostic model has also been applied to gain a further insight into the cause and effect relationships between the experimental in-cylinder pressure time histories and engine-out emissions.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3