Rotordynamic Force Coefficients of Bubbly Mixture Annular Pressure Seals

Author:

Andrés Luis San1

Affiliation:

1. Mast-Childs Tribology Professor Fellow ASME, Mechanical Engineering Department, Texas A&M University, College Station, TX 77843-3123 e-mail:

Abstract

As oil fields deplete, in particular in deep sea reservoirs, pump and compression systems work under more strenuous conditions with gas in liquid and liquid in gas mixtures, mostly inhomogeneous. Off-design operation affects system overall efficiency and reliability, including penalties in leakage and rotordynamic performance of secondary flow components, namely seals. The paper details a bulk-flow model for annular damper seals operating with gas in liquid mixtures. The analysis encompasses all-liquid and all-gas seals, as well as seals lubricated with homogenous (bubbly) mixtures, and predicts the static and dynamic force response of mixture lubricated seals; namely: leakage, power loss, reaction forces, and rotordynamic force coefficients, etc., as a function of the mixture volume fraction (βS), supply and discharge pressures, rotor speed, whirl frequency, etc. A seal example with a nitrogen gas mixed with light oil is analyzed. The large pressure drop (70 bar) causes a large expansion of the gas within the seal even for (very) small gas volume fractions (βS). Predictions show leakage and power loss decrease as β→1; albeit at low βS (< 0.3) (re)laminarization of the flow and an apparent increase in mixture viscosity, produce a hump in power loss. Cross-coupled stiffnesses and direct damping coefficients decrease steadily with increases in the gas volume fraction; however, some anomalies are apparent when the flow turns laminar. Mixture lubricated seals show frequency-dependent force coefficients. The equivalent damping decreases above and below βS ∼ 0.10. The direct stiffness coefficients show atypical behavior: a low βS = 0.1 produces stiffness hardening as the excitation frequency increases. Recall that an all liquid seal has a dynamic stiffness softening as frequency increases due to the apparent fluid mass. The predictions call for an experimental program to quantify the static and dynamic forced performance of annular seals operating with (bubbly) mixtures and to validate the current predictive model results.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference31 articles.

1. “Annular Pressure Seals,”;San Andrés

2. “Annular Gas Seals and Rotordynamics of Compressors and Turbines,”;Childs

3. The Acoustic Influence of Cell Depth on the Rotordynamic Characteristics of Smooth-Rotor/Honeycomb-Stator Annular Gas Seals;Kleynhans;ASME J. Eng. Gas Turbines Power

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3