Some Exact and Approximate Solutions for the Modified von Mises Yield Criterion

Author:

Lee J. H.1

Affiliation:

1. Department of Mechanical Engineering, University of Alaska Fairbanks, Fairbanks, AK 99775

Abstract

The effects of Strength Differential (SD) and plastic compressibility for materials obeying the modified von Mises yield criterion were exemplified by solving two boundary-value problems. The assumptions of associated plasticity (leading to maximum plastic volume increase) and nonassociated plasticity (leading to zero plastic volume increase) were used for comparative studies on the effects of plastic compressibility. The solutions for compression processes showed that SD effects increased the pressure at initial yielding and at failure, as well as increased the capacity of the materials to withstand plastic deformations. The opposite was true for tension processes. For associated and nonassociated plasticity, upper and lower bounds for stresses and strains for load and stroke-controlled situations were indicated. The results also showed unrealistic restrictions on the Poisson’s ratio and C/T for nonassociated plasticity under certain conditions. Hence, plastic volume increase, although small, should be incorporated into a more realistic plasticity model.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3