Yield Functions and Flow Rules for Porous Pressure-Dependent Strain-Hardening Polymeric Materials

Author:

Lee J. H.1,Oung J.1

Affiliation:

1. Department of Mechanical Engineering, University of Alaska, Fairbanks, AK 99775-5905

Abstract

To characterize the response of progressively damaged glassy polymers due to the presence and evolution of voids, yield functions and flow rules were developed systematically for a pressure-dependent matrix following the modified von Mises criterion. A rigid-perfectly plastic material was first assumed. The upper bound method was used with a velocity field which has volume preserving and shape changing portions. Macroscopic yield criterion in analytical closed form was first obtained for spherical voids which is valid for all possible macroscopic strain rate fields. Macroscopic yield criteria in analytical closed form were then obtained for cylindrical voids for the special cases of axisymmetric and plane-strain modes of deformation. The upper-bound solutions were subsequently improved to better match analytical solutions for pure hydrostatic loading. Characteristics of the yield function as a function of pressure dependency and void fraction were studied in detail. Generalization of the model for spherical voids to include elasticity as well as strain hardening of the matrix was then obtained. An example for the uniaxial response of a progressively damaged material was then used to illustrate one possible application of the full set of constitutive equations. [S0021-8936(00)02902-0]

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3