Phononic Materials for Pulse Shaping in Elastic Waveguides Motivated by Shock Testing

Author:

Johnson William R.1,Leamy Michael J.1,DeLima Washington2,Ruzzene Massimo3

Affiliation:

1. School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332

2. Honeywell Federal Manufacturing Technologies, 14520 Botts Road, Kansas, MO 64147

3. Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309

Abstract

Abstract Mechanical shock events experienced by electronic systems can be reproduced in the laboratory using Hopkinson bar tests. In such tests, a projectile strikes a rod, creating a pulse which then travels into the electronic system. The quality of these tests depends on the closeness of the shape of the incident pulse to a desired shape specified for each test. This paper introduces a new approach for controlling the shape of the incident pulse through the use of phononic material concepts, thereby improving the test procedure. Two dispersion-modifying concepts, phononic crystals and local resonators, are examined for their wave-shaping capabilities in one-dimensional elastic waveguides. They are evaluated using a transfer matrix method to determine the output pulse shape in the time domain. Parametric studies show that no single parameter allows for precise-enough control to achieve the possible desired output pulse shapes. Instead, the parameters of an approximate, discrete model for a combined phononic crystal/locally resonant system are optimized together to achieve the desired pulse shape. A sensitivity analysis documents that the pulse shape is relatively insensitive to errors in the optimized parameter values. The optimized discrete model is then translated into a physical design, which when analyzed using the finite element (FE) method shows that desired pulse shapes are indeed produced.

Publisher

ASME International

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3