Experimental Verification of Pulse Shaping in Elastic Metamaterials Under Impact Excitation

Author:

Dorgant Greg1,Johnson William R.2,DeLima Washington3,Leamy Michael J.1

Affiliation:

1. Georgia Institute of Technology George W. Woodruff School of Mechanical Engineering, , Atlanta, GA 30318

2. Savannah River National Laboratory Global Security Directorate, , Aiken, SC 29831

3. Kansas City National Security Campus Advanced Manufacturing Engineering, , Kansas City, MO 64147

Abstract

Abstract We present experimental verification of pulse shaping in elastic metamaterials together with a procedure to design, fabricate, and verify metamaterial pulse shapers under impact excitation. The split Hopkinson pressure bar (SHPB) test, a fundamental dynamic test introduced more than 70 years ago, often incorporates pulse shaping as a means to alter a stress wave, providing the primary motivation for the presented study. Elastic metamaterials hold promise for enhancing conventional pulse shaping abilities and improving capabilities of the SHPB test. We first design the pulse shaper by numerically optimizing its response using finite element analysis. The pulse shaper consists of repeated unit cells based on a combination of a phononic crystal and a local resonator. Then, we fabricate and test pulse shaper candidates to validate the procedural efficacy. An iterative element corrects inaccuracies in input force and material properties and allows convergence on an appropriate pulse shaper. We carry out this procedure by designing pulse shapers fabricated from 3D-printed polylactic acid (PLA) to achieve an extended dwell acceleration pulse shape. In experimental impact tests, the procedure results in rise, dwell, and fall behaviors comparable to that predicted, effectively confirming the efficacy of the presented procedure and verifying the performance of metamaterial-based pulse shapers.

Publisher

ASME International

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3