Optimal Arrangement Design of a Tube Bundle in Cross-Flow Using Computational Fluid Dynamics and Multi-Objective Genetic Algorithm

Author:

Ge Ya1,Xin Feng1,Pan Yao2,Liu Zhichun3,Liu Wei1

Affiliation:

1. School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

2. The China Academy of Launch Vehicle Technology, Beijing 100076, China

3. School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China e-mail:

Abstract

Recently, energy saving problem attracts increasing attention from researchers. This study aims to determine the optimal arrangement of a tube bundle to achieve the best overall performance. The multi-objective genetic algorithm (MOGA) is employed to determine the best configuration, where two objective functions, the average heat flux q and the pressure drop Δp, are selected to evaluate the performance and the consumption, respectively. Subsequently, a decision maker method, technique for order preference by similarity to an ideal solution (TOPSIS), is applied to determine the best compromise solution from noninferior solutions (Pareto solutions). In the optimization procedure, all the two-dimensional (2D) symmetric models are solved by the computational fluid dynamics (CFD) method. Results show that performances alter significantly as geometries of the tube bundle changes along the Pareto front. For the case 1 (using staggered arrangement as initial), the optimal q varies from 2708.27 W/m2 to 3641.25 W/m2 and the optimal Δp varies from 380.32 Pa to 1117.74 Pa, respectively. For the case 2 (using in-line arrangement as initial), the optimal q varies from 2047.56 W/m2 to 3217.22 W/m2 and the optimal Δp varies from 181.13 Pa to 674.21 Pa, respectively. Meanwhile, the comparison between the optimal solution with maximum q and the one selected by TOPSIS indicates that TOPSIS could reduce the pressure drop of the tube bundle without sacrificing too much heat transfer performance.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3