Large Eddy Simulation of Turbulent Wake Behind a Square Cylinder With a Nearby Wall

Author:

Liou Tong-Miin1,Chen Shih-Hui2,Hwang Po-Wen2

Affiliation:

1. College of Engineering, Feng Chia University, Taichung, Taiwan 407, ROC

2. Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan 30013, ROC

Abstract

Computations of the time-averaged and phase-averaged fluid flow and heat transfer based on large eddy simulation (LES) are presented for turbulent flows past a square cylinder with and without a nearby wall at a fixed Reynolds number of 2.2×104. The finite-volume technique was used to solve the time-dependent filtered compressible Navier-Stokes equations with a dynamic subgrid-scale turbulence model, and the numerical fluxes were computed using alternating in time the second-order, explicit MacCormack’s and the modified Godunov’s scheme. Results show some improvements in predicting the streamwise evolutions of the long-time-averaged streamwise mean velocity and total fluctuation intensity along the centerline over those predicted by using Reynolds stress models. A better overall centerline streamwise mean velocity distribution is also predicted by the present LES than by other LES. The wall proximity effect is studied through the comparison of turbulent wake flow past one free standing cylinder and one with a nearby wall, and is illustrated by the phase-averaged spanwise vorticity components and the vortex celerity of spanwise vortices. Moreover, documentation is given on the mechanisms responsible for the augmentation of heat transfer through the spanwise and longitudinal vortices as well as periodic and random fluctuations.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3