Heat Transfer and Fluid Flow in a Square Duct With 12 Different Shaped Vortex Generators

Author:

Liou T.-M.,Chen C.-C.,Tsai T.-W.1

Affiliation:

1. Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan 30043, R.O.C.

Abstract

Detailed local Nusselt number distributions in the first pass of a sharp turning two-pass square channel with various configurations of longitudinal vortex generator arranged on one wall were measured using transient liquid crystal thermography. Flow patterns and friction factors were measured by the use of laser-Doppler velocimeter and pressure transducer, respectively. The Reynolds number, based on channel hydraulic diameter and bulk mean velocity, was fixed at 1.2×104. The vortex generator height-to-hydraulic diameter ratio and pitch-to-height ratio were 0.12 and 10, respectively. Comparisons in terms of heat transfer augmentation and uniformity and friction loss are first performed on 12 configurations of single longitudinal vortex generator. The fluid dynamic mechanisms and wall confinement relevant to heat transfer enhancement are then documented for three-selected vortex generator models. In addition, the differences in fluid flow and heat transfer characteristics between a single vortex generator and a vortex generator array are addressed for the delta wing I and 45 deg V (with tips facing upstream) models which provide better thermal performance among the 12 configurations examined. The direction and strength of the secondary flow with respect to the heat transfer wall are found to be the most important fluid dynamic factors affecting the heat transfer promotion through the channel wall, followed by the convective mean velocity, and then the turbulent kinetic energy. [S0022-1481(00)01202-0]

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 109 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3