Effect of Viscoelasticity on Arterial-Like Pulsatile Flow Dynamics and Energy

Author:

Elliott Winston1,Guo Dongjie2,Veldtman Gruschen3,Tan Wei1

Affiliation:

1. Department of Mechanical Engineering, University of Colorado at Boulder, 1111 Engineering Drive, ECME 114, Boulder, CO 80309

2. Department of Mechanical Engineering, University of Colorado at Boulder, 1111 Engineering Drive, ECME 114, Boulder, CO 80309; State Laboratory of Surface and Interface, Zhengzhou University of Light Industry, Zhengzhou 450002 China

3. Department of Pediatrics, Cincinnati Children's Hospital, University of Cincinnati, 3333 Burnet Ave, Cincinnati, OH 45229

Abstract

Abstract Time-dependent arterial wall property is an important but difficult topic in vascular mechanics. Hysteresis, which appears during the measurement of arterial pressure–diameter relationship through a cardiac cycle, has been used to indicate time-dependent mechanics of arteries. However, the cause–effect relationship between viscoelastic (VE) properties of the arterial wall and hemodynamics, particularly the viscous contribution to hemodynamics, remains challenging. Herein, we show direct comparisons between elastic (E) (loss/storage < 0.1) and highly viscoelastic (loss/storage > 0.45) conduit structures with arterial-like compliance, in terms of their capability of altering pulsatile flow, wall shear, and energy level. Conduits were made from varying ratio of vinyl- and methyl-terminated poly(dimethylsiloxane) and were fit in a mimetic circulatory system measuring volumetric flow, pressure, and strain. Results indicated that when compared to elastic conduits, viscoelastic conduits attenuated lumen distension waveforms, producing an average of 11% greater cross-sectional area throughout a mimetic cardiac cycle. In response to such changes in lumen diameter strain, pressure and volumetric flow waves in viscoelastic conduits decreased by 3.9% and 6%, respectively, in the peak-to-peak amplitude. Importantly, the pulsatile waveforms for both diameter strain and volumetric flow demonstrated greater temporal alignment in viscoelastic conduits due to pulsation attenuation, resulting in 25% decrease in the oscillation of wall shear stress (WSS). We hope these findings may be used to further examine time-dependent arterial properties in disease prognosis and progression, as well as their use in vascular graft design.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3