Affiliation:
1. Western Michigan University, Kalamazoo, MI
2. Virginia Tech, Blacksburg, VA
3. Mississippi State University, Mississippi State, MS
Abstract
With the latest advancements in three-dimensional (3D) measurement technologies, obtaining 3D point cloud data for inspection purposes in manufacturing is becoming more common. While 3D point cloud data allows for better inspection capabilities, their analysis is typically challenging. Especially with unstructured 3D point cloud data, containing coordinates at random locations, the challenges increase with higher levels of noise and larger volumes of data. Hence, the objective of this paper is to extend the previously developed Adaptive Generalized Likelihood Ratio (AGLR) approach to handle unstructured 3D point cloud data used for automated surface defect inspection in manufacturing. More specifically, the AGLR approach was implemented in a practical case study to inspect twenty-seven samples, each with a unique fault. These faults were designed to cover an array of possible faults having three different sizes, three different magnitudes, and located in three different locations. The results show that the AGLR approach can indeed differentiate between non-faulty and a varying range of faulty surfaces while being able to pinpoint the fault location. This work also serves as a validation for the previously developed AGLR approach in a practical scenario.
Publisher
American Society of Mechanical Engineers
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献