Automated assembly quality inspection by deep learning with 2D and 3D synthetic CAD data

Author:

Zhu XiaomengORCID,Mårtensson Pär,Hanson Lars,Björkman Mårten,Maki Atsuto

Abstract

AbstractIn the manufacturing industry, automatic quality inspections can lead to improved product quality and productivity. Deep learning-based computer vision technologies, with their superior performance in many applications, can be a possible solution for automatic quality inspections. However, collecting a large amount of annotated training data for deep learning is expensive and time-consuming, especially for processes involving various products and human activities such as assembly. To address this challenge, we propose a method for automated assembly quality inspection using synthetic data generated from computer-aided design (CAD) models. The method involves two steps: automatic data generation and model implementation. In the first step, we generate synthetic data in two formats: two-dimensional (2D) images and three-dimensional (3D) point clouds. In the second step, we apply different state-of-the-art deep learning approaches to the data for quality inspection, including unsupervised domain adaptation, i.e., a method of adapting models across different data distributions, and transfer learning, which transfers knowledge between related tasks. We evaluate the methods in a case study of pedal car front-wheel assembly quality inspection to identify the possible optimal approach for assembly quality inspection. Our results show that the method using Transfer Learning on 2D synthetic images achieves superior performance compared with others. Specifically, it attained 95% accuracy through fine-tuning with only five annotated real images per class. With promising results, our method may be suggested for other similar quality inspection use cases. By utilizing synthetic CAD data, our method reduces the need for manual data collection and annotation. Furthermore, our method performs well on test data with different backgrounds, making it suitable for different manufacturing environments.

Funder

Wallenberg AI, Autonomous Systems and Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3