Heat Transfer Enhancement in Microchannels Incorporating Slanted Grooves

Author:

Lee Poh-Seng1,Teo Chiang-Juay1

Affiliation:

1. National University of Singapore, Singapore

Abstract

The ever-increasing density, speed, and power consumption of microelectronics has led to a rapid increase in the heat fluxes which need to be dissipated in order to ensure their stable and reliable operation. The shrinking dimensions of electronics devices, in parallel, have imposed severe space constraints on the volume available for the cooling solution, defining the need for innovative and highly effective compact cooling techniques. Microchannel heat sinks have the potential to satisfy these requirements. However, significant temperature variations across the chip persist for conventional single-pass parallel flow microchannel heat sinks since the heat transfer performance deteriorates in the flow direction in microchannels as the boundary layers thicken and the coolant heats up. To accommodate higher heat fluxes, enhanced microchannel designs are needed. The present work presents an idea to enhance the single-phase convective heat transfer in microchannels. The proposed technique is passive, and does not require additional energy to be expended to enhance the heat transfer. The idea incorporates the generation of a spanwise or secondary flow to enhance mixing and hence decrease fluid temperature gradients across the microchannel. Slanted grooves can be created on the microchannel wall to induce the flow to twist and rotate thus introducing an additional component to the otherwise laminar flow in the microchannel. Numerical results are presented to demonstrate the effectiveness of such an enhanced microchannel heat sink. The heat transfer was found to increase by up to 12% without incurring substantial additional pressure drops.

Publisher

ASMEDC

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Heat Transfer Characteristics of a Microchannel Heat Sink with Highly-Dense Micro-Jet Arrays;Journal of Thermal Science;2024-04-15

2. Hydraulic-thermal analysis of laminar flows in a rectangular channel with 45°-inclined grooves;THE 2ND UNIVERSITAS LAMPUNG INTERNATIONAL CONFERENCE ON SCIENCE, TECHNOLOGY, AND ENVIRONMENT (ULICoSTE) 2021;2022

3. Heat transfer characteristics of alternating discrete flow in micro-tubes;International Journal of Heat and Mass Transfer;2014-07

4. Thermal Performance of a Water-Cooled Microchannel Heat Sink With Grooves and Obstacles;Journal of Electronic Packaging;2014-04-29

5. Effect of Al2O3/H2O nanofluid on MWNT circular fin structures in a minichannel;International Journal of Heat and Mass Transfer;2013-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3