Thermal Performance of a Water-Cooled Microchannel Heat Sink With Grooves and Obstacles

Author:

Xie Yonghui1,Shen Zhongyang1,Zhang Di23,Lan Jibing4

Affiliation:

1. School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi Province 710049, China e-mail:

2. Associate Professor School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi Province 710049, China;

3. Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education, Xi’an Jiaotong University, Xi’an, Shaanxi Province 710049, China e-mail:

4. School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi Province 710049, China e-mail:

Abstract

With the rapid development of microelectromechanical systems (MEMS) in IT industry, the heat flux in microchannel has reached a high level which demands preferable cooling technology. Water cooling has become a favor cooling approach in electronic microdevices due to better thermal performance than air cooling method. In the present paper, thermal performance in microchannels with grooves and obstacles are investigated numerically. The height and width of the rectangular microchannel are 200 and 50 μm, respectively. As a simple modification of dimple/protrusion, the groove/obstacle diameter is 100 μm and the depth is 20 μm. Different arrangements of grooves and obstacles are considered on Reynolds range of 100–900. The numerical results show that groove/obstacle structure is effective for cooling enhancement in microchannel. Among the cases in this research, the normalized Nusselt number Nu/Nu0 is within the range of 1.446–26.19, while the pressure penalty f/f0 has a much larger range from 0.86 to 110.18 depending on specific orientation. Field synergy analysis and performance evaluation plot are adopted to discuss the mechanism of heat transfer enhancement and energy saving performance integrating the pumping performance. From the viewpoint of energy saving, groove on single surface (case 1) has the best performance. Furthermore, performances of grooved microchannels are compared with that of dimpled microchannels which were discussed in the author’s previous research. The results indicate grooved microchannels have larger range of both Nu/Nu0 and f/f0 and some grooved cases possess high TP than dimpled microchannels.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3