Effects of Exhaust Gas Recirculation Constituents on Methyl Decanoate Auto-Ignition: A Kinetic Study

Author:

Zhang Jiabo1,Zhai Jiaqi1,Ju Dehao1,Huang Zhen1,Han Dong1

Affiliation:

1. Key Laboratory of Power Machinery and Engineering, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China e-mail:

Abstract

Biodiesel engines are found to have improved soot, hydrocarbon (HC), and carbon monoxide (CO) emissions, with modestly increased nitrogen oxides (NOx) emissions. Exhaust gas recirculation (EGR) could be used for the NOx emissions control, especially in the fuel-kinetics-dominated engine combustion concepts. A detailed chemical kinetic model of methyl decanoate (MD), a biodiesel surrogate fuel, was used here to simulate the two-stage auto-ignition process of biodiesel with EGR addition. The effects of EGR constituents, including carbon dioxide (CO2), water vapor (H2O), CO and H2, were identified in a constant-pressure ignition process and in a variable pressure, variable volume process. Firstly, numerical methods were used to isolate the dilution, thermal, and chemical effects of CO2 and H2O at a constant pressure. It was found that in the biodiesel auto-ignition processes, the dilution effects of CO2 and H2O always played the primary role. Their thermal and chemical effects mainly influenced the second-stage ignition, and the chemical effect of H2O was more significant than CO2. The triple effects of CO and H2 were also analyzed at the same temperature and pressure conditions. Additionally, the sensitivity analysis and reaction pathway analysis were conducted to elucidate the chemical effects of CO and H2 on the ignition processes at different temperatures. Finally, based on a variable pressure, variable volume model simulating the engine compression stroke, the effects of CO2, H2O, CO and H2 addition under the engine operational conditions were studied and compared to those under the constant pressure conditions.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3