Composition of Reduced Mechanisms for Ignition of Biodiesel Surrogates

Author:

Pichler ChristofferORCID,Nilsson Elna J. K.ORCID

Abstract

Chemical kinetics mechanisms describing Fatty Acid Methyl Ester (FAME) biofuel combustion are quite extensive and cannot be implemented in Computational Fluid Dynamics simulations of real engine systems. Using the reduction methodology Ant Colony Reduction (ACR), skeletal reduction followed by optimization has been performed for the C-11 FAME biodiesel components methyl decanoate (MD), methyl 5-decenoate (MDe5), and methyl 9-decenoate (MDe9), and for the alkane n-decane. The aim of the present study was to produce small reduced mechanisms accurately describing ignition of the fuels over a wide range of conditions, and in addition to compare the size and composition of reduced mechanisms constructed from two parent mechanisms of different complexity. Reduction targets were ignition delay times over a wide range of equivalence ratios and pressures, for separate temperature ranges of 600–1100 K (LT) and 1100–1500 K (HT). One of the complex mechanisms was constructed to be simplified by a lumping approach and this one included MD and was also used to perform reduction for the alkane n-decane. The most detailed parent mechanism was used to create reduced mechanisms for all the three methyl esters. The lumped complex mechanisms resulted in more compact reduced mechanisms, 157 reactions for LT of MD, compared to 810 reactions for the more detailed mechanism. MD required the largest fuel breakdown subsets while the unsaturated methyl esters could be described by smaller subsets. All mechanisms had similar subsets for the smallest hydrocarbons and H/O chemistry, independent of the fuel and the choice of parent mechanism. The ACR approach for mechanism reduction created reduced mechanisms with high accuracy for all conditions included in the present study.

Publisher

MDPI AG

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3