Oxy-Combustion Modeling for Direct-Fired Supercritical CO2 Power Cycles

Author:

Strakey Peter A.1

Affiliation:

1. National Energy Technology Laboratory, 3610 Collins Ferry Road, PO Box 880, Morgantown, WV 26507 e-mail:

Abstract

Supercritical CO2 power cycles for fossil energy power generation will likely employ oxy-combustion at very high pressures, possibly exceeding 300 bar. At these high pressures, a direct fired oxy-combustor is more likely to behave like a rocket engine than any type of conventional gas turbine combustor. Issues such as injector design, wall heat transfer, and combustion dynamics may play a challenging role in combustor design. Computational fluid dynamics modeling will not only be useful, but may be a necessity in the combustor design process. To accurately model turbulent reacting flows, combustion submodels appropriate for the conditions of interest as defined by the turbulent time and length scales as well as chemical kinetic time scales are necessary. This paper presents a comparison of various turbulence–chemistry interaction (TCI) modeling approaches on a canonical, single injector, direct-fired sCO2 combustor. Large eddy simulation is used to model the turbulent combustion process with varying levels of injector oxygen concentration while comparing the effect of the combustion submodel on CO emissions and flame shape. While experimental data are not yet available to validate the simulations, the sensitivity of CO production and flame shape can be studied as a function of combustion modeling approach and oxygen concentration in an effort to better understand how to approach combustion modeling at these unique conditions.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3