Material Characterization of Human Medial Collateral Ligament

Author:

Quapp K. M.1,Weiss J. A.2

Affiliation:

1. Orthopedic Biomechanics Institute, Department of Bioengineering, University of Utah, Salt Lake City, UT 84107

2. Biomedical Engineering Program, University of Arizona, Tucson, AZ 85721; Orthopedic Biomechanics Institute, Department of Bioengineering, University of Utah, Salt Lake City, UT 84107

Abstract

The objectives of this study were to determine the longitudinal and transverse material properties of the human medial collateral ligament (MCL) and to evaluate the ability of three existing constitutive models to describe the material behavior of MCL. Uniaxial test specimens were punched from ten human cadaveric MCLs and tensile tested along and transverse to the collagen fiber direction. Using load and optical strain analysis information, the tangent modulus, tensile strength and ultimate strain were determined. The material coefficients for each constitutive model were determined using nonlinear regression. All specimens failed within the substance of the tissue. Specimens tested along the collagen fiber direction exhibited the typical nonlinear behavior reported for ligaments. This behavior was absent from the stress–strain curves of the transverse specimens. The average tensile strength, ultimate strain, and tangent modulus for the longitudinal specimens was 38.6 ± 4.8 MPa, 17.1 ± 1.5 percent, and 332.2 ± 58.3 MPa, respectively. The average tensile strength, ultimate strain, and tangent modulus for the transverse specimens was 1.7 ± 0.5 MPa, 11.7 ± 0.9 percent, and 11.0 ± 3.6 MPa, respectively. All three constitutive models described the longitudinal behavior of the ligament equally well. However, the ability of the models to describe the transverse behavior of the ligament varied.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 286 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3