Affiliation:
1. Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan 10617
Abstract
Internal resonance between a pair of forward and backward modes of a spinning disk under space-fixed pulsating edge loads is investigated by means of multiple scale method. It is found that internal resonance can occur only at certain rotation speeds at which the natural frequency of the forward mode is close to three times the natural frequency of the backward mode and the excitation frequency is close to twice the frequency of the backward mode. For a light damping case the trivial solution can lose stability via both pitchfork as well as Hopf bifurcations when frequency detuning of the edge load is varied. On the other hand, nontrivial solutions experience both saddle-node and Hopf bifurcations. When the damping is increased, the Hopf bifurcations along the trivial solution path disappear. Furthermore, there exists a certain value of damping beyond which no nontrivial solution is possible. Single-mode resonance is also briefly discussed for comparison.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献