Dynamics Behavior of a Guided Spline Spinning Disk, Subjected to Conservative In-Plane Edge Loads, Analytical and Experimental Investigation

Author:

Mohammadpanah Ahmad1,Hutton Stanley G.2

Affiliation:

1. Department of Mechanical Engineering, The University of British Columbia, FPInnovations, Vancouver, BC V6T 1Z4, Canada e-mail:

2. Professor Emeritus Department of Mechanical Engineering, The University of British Columbia, FPInnovations, Vancouver, BC V6T 1Z4, Canada

Abstract

The governing linear equations of transverse motion of a spinning disk with a splined inner radius and constrained from lateral motion by guide pads are derived. The disk is driven by a matching spline arbor that offers no restraint to the disk in the lateral direction. Rigid body translational and tilting degrees-of-freedom are included in the analysis of total motion of the spinning disk. The disk is subjected to lateral constraints and loads. Also considered are applied conservative in-plane edge loads at the outer and inner boundaries. The numerical solution of these equations is used to investigate the effect of the loads and constraints on the natural frequencies, critical speeds, and stability of a spinning disk. The sensitivity of eigenvalues of spline spinning disk to the in-plane edge loads is analyzed by taking the derivative of the spinning disk's eigenvalues with respect to the loads. An expression for the energy induced in the spinning disk by the in-plane loads, and their interaction at the inner radius, is derived by computation of the rate of work done by the lateral component of the edge loads. Experimental idling and cutting tests for a guided spline saw are conducted at the critical speed, super critical speeds, and at the flutter instability speed. The cutting results at different speeds are compared to show that the idling results of a guided spline disk can be used to predict stable operation speeds of the system during cutting.

Publisher

ASME International

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3