Identification of Speed-Dependent Active Magnetic Bearing Parameters and Rotor Balancing in High-Speed Rotor Systems

Author:

Prasad Vikas1,Tiwari Rajiv2

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India e-mail:

2. Professor Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India e-mail:

Abstract

Estimating residual unbalances of a flexible rotor that is fully levitated on active magnetic bearings (AMBs) are challenging tasks due to the modeling error of AMB rotordynamic parameters. In this work, an identification algorithm has been developed for the estimation of dynamic parameters of speed-dependent AMBs and residual unbalances in a high-speed flexible rotor-bearing system. Parameters are identified during an estimation process with the help of displacement and current information at AMB locations only. For reducing the finite element model to suit the measurement availability, an improved dynamic reduction scheme has been proposed, which considers the gyroscopic matrix also in the transformation matrix. For a numerical testing of the developed identification algorithm, a multidisk flexible-shaft rotor is considered, which is fully levitated on AMBs. Speed-dependent AMB parameters have been modeled by a cubic function. Proportional–integral–derivative (PID) controllers are used to control the supply current to AMBs. Displacements and currents are generated using the finite element method of the rotor-AMB numerical model. These responses have been used in the identification algorithm for the estimation of the AMB displacement and current stiffness as well as of residual unbalances, concurrently. The algorithm with the proposed reduction scheme has shown an excellent estimation agreement in the presence of noisy responses and bias errors in rotor model parameters.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3