Study on the Lubrication Characteristics of Spur Gear Pairs With Low Sliding Ratio Under Mixed Elastohydrodynamic Lubrication

Author:

Zhao Jiang12,Sheng Wei12,Li Zhengminqing12,Zhang Hong12,Zhu Rupeng12

Affiliation:

1. College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;

2. National Key Laboratory of Science and Technology on Helicopter Transmission, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Abstract

Abstract The relative sliding at the meshing point directly affects the contact and lubrication characteristics of the gear pair and is an important factor of gear wear and power loss. In this study, for investigation of a new type of low sliding ratio (LSR) gear pair whose tooth profile is constructed by a cubic function, a three-dimensional (3D) mixed elastohydrodynamic lubrication (EHL) line contact model was established with consideration of the effect of tooth profile geometry, transient motion characteristics, load distribution, and machining roughness. The distribution of the center film thickness of the LSR gear along the meshing line was predicted through an example the result of which was compared with a typical line contact EHL formula to verify the model. In addition, the difference was investigated in film thickness distribution of friction coefficient and temperature rise between LSR spur gears and involute spur gears. Hence, the effect of 3D rough tooth surface on the contact lubrication characteristics of LSR gears was discussed. The results demonstrated that the minimum center film thickness of the LSR gear appeared at the alternating point of the concave and convex tooth surfaces. At the same time, compared with the involute gear, the LSR gear significantly increased the film thickness at the start and ending points of the meshing and reduced the friction coefficient and the flash temperature rise.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3