Optimization Method of Design Parameters of Hypoid Gears With Low Sliding Ratio

Author:

Zhang Yu1,Wang Zhiyong1,Yan Hongzhi2

Affiliation:

1. Central South University of Forestry and Technology Institute of Modern Mechanical Transmission Engineering Technology, , Changsha, Hunan 410004 , China

2. Central South University State Key Laboratory of High Performance Complex Manufacturing, , Changsha, Hunan 410012 , China

Abstract

Abstract To reduce the wear, an optimization method of hypoid gears with the objective of minimizing the pinion sliding ratio is proposed. First, the sliding ratio model of the hypoid gear is established on the basis of the spatial gear meshing theory. Furthermore, the influence of design parameters on the sliding ratio and the relative sliding velocity is discussed, and the analysis results show that the parameters, especially the spiral angle and the pressure angle, have the most significant influence on the sliding ratio of the pinion. Additionally, the optimization model of hypoid gears is established, and the optimization objective is to minimize the sum of the absolute sliding ratios of 34 meshing points on the pinion tooth surfaces. Through comparison before and after optimization, it is found that the maximum drops of the sliding ratios for the pinion drive and coast side are 68.6% and 29.58%, respectively. Finally, the results of the running temperature tests demonstrate that the temperature of the optimized gear pair is significantly reduced and that the proposed method is effective.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3