A Pseudo-Rigid-Body Model of the Human Spine to Predict Implant-Induced Changes on Motion

Author:

Halverson Peter A.1,Bowden Anton E.2,Howell Larry L.2

Affiliation:

1. Department of Mechanical Engineering, Brigham Young University, Provo, UT 84602; Crocker Spinal Technologies, Salt Lake City, UT 84121

2. Department of Mechanical Engineering, Brigham Young University, Provo, UT 84602

Abstract

Injury, instrumentation, or surgery may change the functional biomechanics of the spine. Adverse changes at one level may affect the adjacent levels. Modeling these changes can increase the understanding of adjacent-level effects and may help in the creation of devices that minimize adverse outcomes. The current modeling techniques (e.g., animal models, in vitro testing, and finite element analysis) used to analyze these effects are costly and are not readily accessible to the clinician. It is proposed that the pseudo-rigid-body model(PRBM) may be used to accurately predict adjacent level effects in a quick and cost effective manner that may lend itself to a clinically relevant tool for identifying the adjacent-level effects of various treatment options for patients with complex surgical indications. A PRBM of the lumbar spine (lower back) was developed using a compliant mechanism analysis approach. The global moment-rotation response, relative motion, and local moment-rotation response of a cadaveric specimen were determined through experimental testing under three conditions: intact, fused, and implanted with a prototype total disc replacement. The spine was modeled using the PRBM and compared with the values obtained through in-vitro testing for the three cases. The PRBM accurately predicted the moment-rotation response of the entire specimen. Additionally, the PRBM predicted changes in relative motion patterns of the specimen. The resulting models show particular promise in evaluating various procedures and implants in a clinical setting and in the early stage design process.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3