Effects of the Re-Entrant Bowl Geometry on a DI Turbocharged Diesel Engine Performance and Emissions—A CFD Approach

Author:

Venkateswaran S. Pasupathy1,Nagarajan G.1

Affiliation:

1. Department of Mechanical Engineering, Anna University Chennai, Chennai, Tamilnadu 600 025, India

Abstract

The purpose of this study is to investigate the influence of re-entrant bowl geometry on both engine performance and combustion efficiency in a direct injection (DI), turbocharged diesel engine for heavy-duty applications. The piston bowl design is one of the most important factors that affect the air–fuel mixing and the subsequent combustion and pollutant formation processes in a DI diesel engine. The bowl geometry and dimensions, such as the pip region, bowl lip area, and toroidal radius, are all known to have an effect on the in-cylinder mixing and combustion processes. Based on the idea of enhancing diffusion combustion at the later stage of the combustion period, three different bowl geometries, namely, bowl 1 (baseline), bowl 2, and bowl 3 were selected and investigated. All the other relevant parameters, namely, compression ratio, maximum diameter of the bowl, squish clearance and injection rate were kept constant. A commercial CFD code STAR-CD was used to model the in-cylinder flows and combustion process, and experimental results of the baseline bowl were used to validate the numerical model. The simulation results show that, bowl 3 enhance the turbulence and hence results in better air-fuel mixing among all three bowls in a DI diesel engine. As a result, the indicated specific fuel consumption and soot emission reduced although the NOx emission is increased owing to better mixing and a faster combustion process. Globally, since the reduction in soot is larger (−46% as regards baseline) than the increase in NOx (+15% as regards baseline), it can be concluded that bowl 3 is the best trade-off between performance and emissions.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3