Hydraulic Behavior in Cased and Open-Hole Sections in Highly Deviated Wellbores

Author:

Ytrehus Jan David1,Lund Bjørnar1,Taghipour Ali1,Kosberg Birgitte Ruud2,Carazza Luca3,Gyland Knud Richard4,Saasen Arild5

Affiliation:

1. SINTEF, Trondheim 7465, Norway

2. SINTEF, Trondheim 7030, Norway

3. Aker BP, Stavanger 4020, Norway

4. Schlumberger, MI-SWACO, Stavanger 4313, Norway

5. University of Stavanger, Stavanger 4036, Norway

Abstract

Abstract In this paper, we present results from flow loop experiments with an oil-based drilling fluid with micronized barite as weight materials. The use of micronized barite allows using lower viscosity drilling fluid, providing non-laminar flow, which is advantageous for particle transport in near-horizontal sections. While transition to turbulence and turbulent flow of non-Newtonian fluids has been well studied both theoretically and experimentally, there are very few published results on the effect of wellbore wall properties on flow regime transition and turbulence. This is relevant because horizontal sections are often open hole with less well-defined surfaces than a steel casing surface. We have conducted a series of flow experiments with and without cuttings size particles in a 10-m long annular test section using steel and concrete material to represent the wellbore wall of a cased and open-hole section. In both cases, the annulus was formed by a freely rotating steel pipe of 2” outer diameter inside a 4” diameter wellbore. Experiments were conducted at 48 deg, 60 deg, and 90 deg wellbore inclination from vertical. The two materials result in different hydraulic behaviors without particles with stronger turbulence when using concrete wellbore wall material than when using steel casing. While there is a negligible difference at low flowrates, at 0.8 m/s and below, there is an increasing difference as the flowrate increases and becomes transitional to turbulence. Hole cleaning is found to differ dependent on the wall material. However, the effect on hole cleaning is less clear than for the pressure loss.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3