Effects of Heart Rate on the Pulsatile Flow Characteristics of a Stenotic Aortic Valve Model: An In Vitro Experimental Study

Author:

Zhang Ruihang1,Zhang Yan1

Affiliation:

1. Department of Mechanical Engineering, North Dakota State University, Dept 2490, P.O. Box 6050, Fargo, ND 58078

Abstract

Abstract In this paper, the characteristics of pulsatile flow past a silicone-based artificial stenotic aortic valve under varied heart rates have been studied using particle image velocimetry (PIV). Pulsatile flow waveforms were generated by a closed-loop cardiovascular flow simulator. Phase-locked PIV was employed to quantify the average and turbulent flow field information. Pressure gradient waveforms were recorded to evaluate the severity of the stenosis. Results suggest that as the heart rate increases, the peak pressure gradient across the stenotic aortic valve increases significantly under the same cardiac output. Under the same cardiac output, the aortic valve area (AVA) estimated using Gorlin equation decreases as the heart rate increases, while the trend is reversed using Hakki equation estimation. PIV results suggest that the peak systolic jet velocity downstream of the valve increases as the heart rate increases, implying a longer pressure recovery distance as heart rate increases. While the turbulence at peak systole is higher under the slower heart rate, the faster heart rate contributes to higher turbulence during the late systole and early diastole phases. Based on the comparison with no-valve cases, the differences in turbulence kinetic energy (TKE) was mainly related to the dynamics of leaflets under different heart rates. Overall, the results obtained in this study demonstrate that the hemodynamics of a stenotic aortic valve is complex, and the assessment of AS could be significantly affected by the pulsating rate of the flow.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3