Heat Transfer in Direct Contact Condensation of Steam to Subcooled Water Spray

Author:

Takahashi Minoru1,Nayak Arun Kumar2,Kitagawa Shin-ichi3,Murakoso Hiroyuki3

Affiliation:

1. Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8550, Japan

2. Reactor Engineering Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India

3. Department of Nuclear Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8550, Japan

Abstract

The condensation heat transfer of saturated steam to a hollow-cone spray of subcooled water was investigated experimentally and analytically. The spray water temperature rose more steeply in flow direction than those in the previous studies, because of the use of smaller thermocouple which was capable of measuring the temperature in a thin water sheet and water droplets more accurately. The result of the condensation heat transfer coefficient suggested the breakup of the water sheet into droplets. A pure conduction model underpredicted the heat transfer in the sheet region significantly, which was better predicted by considering turbulence in the sheet. The heat transfer in the droplet region was well estimated by considering internal circulation and mixing inside the droplets.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Theoretical modeling and investigation of the influence of deaerator on the transient process in power plants;Applied Energy;2024-12

2. Effect of non-condensable gas on the direct-contact condensation heat transfer of vapor in a convergent tube;Chemical Engineering Research and Design;2024-03

3. References;Handbook on Thermal Hydraulics in Water-Cooled Nuclear Reactors;2024

4. References;Handbook on Thermal Hydraulics in Water-Cooled Nuclear Reactors;2024

5. References;Handbook on Thermal Hydraulics in Water-Cooled Nuclear Reactors;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3