A Mathematical Model of Condensation Heat and Mass Transfer to a Moving Droplet in its Own Vapor

Author:

Chung J. N.1,Chang Tae-Ho1

Affiliation:

1. Department of Mechanical Engineering, Washington State University, Pullman, Wash. 99164

Abstract

A mathematical model appropriate for predicting condensation heat and mass transfer rates along the surface of a droplet moving in pure vapor is developed. A Karman-Pohlhansen type of integral approach was adopted for the solution of vapor-phase boundary layer equations. The diffusion-dominated internal core was solved using a finite difference numerical scheme. The rate-controlling mechanism of pure vapor condensing on a droplet was found in the thermal core region of the liquid phase where the streamlines correspond to the isotherms and diffusion is the primary transport mechanism. The total rate of heat transfer is found to be inversely proportional to the droplet radius. The condensation velocity at the vapor-liquid interface reduces the boundary layer thickness and moves the separation point toward the rear stagnation point. The internal motion also helps increase the transport rates by reducing both the boundary layer thickness and thermal resistance in the liquid phase. The results predicted by this model compare favorably with available experimental values.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3