Dynamic Properties of Human Stapedial Annular Ligament Measured With Frequency–Temperature Superposition

Author:

Zhang Xiangming1,Gan Rong Z.2

Affiliation:

1. School of Aerospace and Mechanical Engineering and OU Bioengineering Center, University of Oklahoma, Norman, OK 73019

2. Professor Department of Biomedical Engineering, School of Aerospace and Mechanical Engineering and Bioengineering Center, University of Oklahoma, 865 Asp Avenue, Room 200, Norman, OK 73019 e-mail:

Abstract

Stapedial annular ligament (SAL) is located at the end of human ear ossicular chain and provides a sealed but mobile boundary between the stapes footplate and cochlear fluid. Mechanical properties of the SAL directly affect the acoustic-mechanical transmission of the middle ear and the changes of SAL mechanical properties in diseases (e.g., otosclerosis) may cause severe conductive hearing loss. However, the mechanical properties of SAL have only been reported once in the literature, which were obtained under quasi-static condition (Gan, R. Z., Yang, F., Zhang, X., and Nakmali, D., 2011, “Mechanical Properties of Stapedial Annular Ligament,” Med. Eng. Phys., 33, pp. 330–339). Recently, the dynamic properties of human SAL were measured in our lab using dynamic-mechanical analyzer (DMA). The test was conducted at the frequency range from 1 to 40 Hz at three different temperatures: 5 °C, 25 °C, and 37 °C. The frequency–temperature superposition (FTS) principle was applied to extend the testing frequency range to a much higher level. The generalized Maxwell model was employed to describe the constitutive relation of the SAL. The storage shear modulus G′ and the loss shear modulus G″ were obtained from seven specimens. The mean storage shear modulus was 31.7 kPa at 1 Hz and 61.9 kPa at 3760 Hz. The mean loss shear modulus was 1.1 kPa at 1 Hz and 6.5 kPa at 3760 Hz. The dynamic properties of human SAL obtained in this study provide a better description of the damping behavior of soft tissues than the classic Rayleigh type damping, which was widely used in the published ear models. The data reported in this study contribute to ear biomechanics and will improve the accuracy of finite element (FE) model of the human ear.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Reference30 articles.

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3