Relative importance and interactions of parameters of finite-element models of human middle ear

Author:

Ebrahimian Arash1,Mohammadi Hossein1,Maftoon Nima1

Affiliation:

1. Department of Systems Design Engineering, University of Waterloo , Waterloo, Ontario, Canada

Abstract

In the last decades, finite-element models of the middle ear have been widely used to predict the middle-ear vibration outputs. Even with the simplest linear assumption for material properties of the structures in the middle ear, these models need tens of parameters. Due to the complexities of measurements of material properties of these structures, accurate estimations of the values of most of these parameters are not possible. In this study, we benefited from the stochastic finite-element model of the middle ear we had developed in the past, to perform global sensitivity analysis. For this aim, we implemented Sobol′ sensitivity analysis which ranks the importance of all uncertain parameters and interactions among them at different frequencies. To decrease the computational costs, we found Sobol′ indices from surrogate models that we created using stochastic finite-element results and the polynomial chaos expansion method. Based on the results, the Young's modulus and thickness of the tympanic membrane, Young's modulus and damping of the stapedial annular ligaments, and the Young's modulus of ossicles are among the parameters with the greatest impacts on vibrations of the umbo and stapes footplate. Furthermore, the most significant interactions happen between the Young's modulus and thickness of the tympanic membrane.

Funder

Natural Sciences and Engineering Research Council of Canada

Canada Foundation for Innovation

Publisher

Acoustical Society of America (ASA)

Subject

Acoustics and Ultrasonics,Arts and Humanities (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3