Nonlinear Bending Mechanics of Hygroscopic Liquid Crystal Polymer Networks

Author:

Hays M. R.1,Wang H.1,Oates W. S.1

Affiliation:

1. Department of Mechanical Engineering, Florida Center for Advanced Aero-Propulsion–FCAAP, Florida A&M/Florida State University, Tallahassee, FL 32310-6046

Abstract

A chemically responsive liquid crystal polymer network is experimentally characterized and compared to a nonlinear constitutive model and integrated into a finite element shell model. The constitutive model and large deformation shell model are used to understand water vapor induced bending. This class of materials is hygroscopic and can exhibit large bending as water vapor is absorbed into one side of the liquid crystal network (LCN) film. This gives rise to deflection away from the water vapor source which provides unique sensing and actuation characteristics for chemical and biomedical applications. The constitutive behavior is modeled by coupling chemical absorption with nonlinear continuum mechanics to predict how water vapor absorption affects bending deformation. In order to correlate the model with experiments, a micro-Newton measuring device was designed and tested to quantify bending forces generated by the LCN. Forces that range between 1 and 8 μN were measured as a function of the distance between the water vapor source and the LCN. The experiments and model comparisons provide important insight into linear and nonlinear chemically induced bending for a number of applications such as microfluidic chemical and biological sensors.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3