Constitutive Theory for Direct Coupling of Molecular Frictions and the Viscoelasticity of Soft Materials

Author:

Lu Di1,Xue Bin2,Cao Yi32,Chen Bin45

Affiliation:

1. Department of Engineering Mechanics, Zhejiang University, Hangzhou 310026, China

2. Collaborative Innovation Center of Advanced Microstructures; National Laboratory of Solid State Microstructure; Department of Physics, Nanjing University, Nanjing 210093, China

3. Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China;

4. Department of Engineering Mechanics, Zhejiang University, Hangzhou, China;

5. Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Hangzhou, China

Abstract

Abstract How to directly relate frictions at the level of a single molecular chain to the viscoelasticity of soft materials is intriguing. Here, we choose to investigate classical elastomers, where molecular frictions are known to be generated when dangling chains move relatively to the surrounding polymer chain network. With explicit forms employed for the relationship between friction and velocity at the molecular scale, a constitutive theory is then developed for the coupling of molecular frictions and the macroscopic viscoelasticity of elastomers. With the utilization of this theory, viscoelastic behaviors of varied elastomeric materials are predicted, which agree well with existing experiments at both low and high strain rates under different loading conditions. The theory also reproduces the time-temperature equivalent principle of elastomers. We suggest that this work might have provided a modeling framework that directly couples frictions at the level of a single molecular chain to the viscoelasticity of soft materials.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3