Large-Eddy Simulation and RANS Analysis of the End-Wall Flow in a Linear Low-Pressure Turbine Cascade, Part I: Flow and Secondary Vorticity Fields Under Varying Inlet Condition

Author:

Pichler Richard1,Zhao Yaomin1,Sandberg Richard1,Michelassi Vittorio2,Pacciani Roberto3,Marconcini Michele3,Arnone Andrea3

Affiliation:

1. Department of Mechanical Engineering, University of Melbourne, Parkville, Victoria 3010, Australia

2. Baker Hughes, a GE Company, Via Felice Matteucci 10, Florence 50127, Italy

3. Department of Industrial Engineering, University of Florence, via di Santa Marta, 3, Florence 50139, Italy

Abstract

Abstract In low-pressure turbines (LPTs), around 60–70% of losses are generated away from end-walls, while the remaining 30–40% is controlled by the interaction of the blade profile with the end-wall boundary layer. Experimental and numerical studies have shown how the strength and penetration of the secondary flow depends on the characteristics of the incoming end-wall boundary layer. Experimental techniques did shed light on the mechanism that controls the growth of the secondary vortices, and scale-resolving computational fluid dynamics (CFD) allowed to dive deep into the details of the vorticity generation. Along these lines, this paper discusses the end-wall flow characteristics of the T106 LPT profile at Re = 120 K and M = 0.59 by benchmarking with experiments and investigating the impact of the incoming boundary layer state. The simulations are carried out with proven Reynolds-averaged Navier–Stokes (RANS) and large-eddy simulation (LES) solvers to determine if Reynolds-averaged models can capture the relevant flow details with enough accuracy to drive the design of this flow region. Part I of the paper focuses on the critical grid needs to ensure accurate LES and on the analysis of the overall time-averaged flow field and comparison between RANS, LES, and measurements when available. In particular, the growth of secondary flow features, the trace and strength of the secondary vortex system, and its impact on the blade load variation along the span and end-wall flow visualizations are analyzed. The ability of LES and RANS to accurately predict the secondary flows is discussed together with the implications this has on design.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3